CASR: a context-aware residual network for single-image super-resolution

摘要

With the significant power of deep learning architectures, researchers have made much progress on super-resolution in the past few years. However, due to low representational ability of feature maps extracted from nature scene images, directly applying deep learning architectures for super-resolution could result in poor visual effects. Essentially, unique characteristics like low-frequency information should be emphasized for better shape reconstruction, other than treated equally across different patches and channels. To ease this problem, we propose a lightweight context-aware deep residual network named as CASR network, which appropriately encodes channel and spatial attention information to construct context-aware feature map for single-image super-resolution. We firstly design a task-specified inception block with a novel structure of astrous filters and specially chosen kernel size to extract multi-level information from low-resolution images. Then, a Dual-Attention ResNet module is applied to capture context information by dually connecting spatial and channel attention schemes. With high representational ability of context-aware feature map, CASR can accurately and efficiently generate high-resolution images. Experiments on several popular datasets show the proposed method has achieved better visual improvements and superior efficiencies than most of the existing studies.

出版物
Neural Computing and Applications
巫义锐
巫义锐
青年教授, CCF 高级会员

My research interests include Computer Vision, Artifical Intelligence, Multimedia Computing and Intelligent Water Conservancy.