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Abstract
Incremental few-shot semantic segmentation (IFSS) expands
segmentation capacity of the trained model to segment new-
class images with few samples. However, semantic meanings
may shift from background to object class or vice versa dur-
ing incremental learning. Moreover, new-class samples of-
ten lack representative attribute features when the new class
greatly differs from the pre-learned old class. In this paper, we
propose a causal framework to discuss the cause of semantic
shift and incompleteness in IFSS, and we deconfound the re-
vealed causal effects from two aspects. First, we propose a
Causal Intervention Module (CIM) to resist semantic shift.
CIM progressively and adaptively updates prototypes of old
class, and removes the confounder in an intervention manner.
Second, a Prototype Refinement Module (PRM) is proposed
to complete the missing semantics. In PRM, knowledge
gained from the episode learning scheme assists in fusing fea-
tures of new-class and old-class prototypes. Experiments on
both PASCAL-VOC 2012 and ADE20k benchmarks demon-
strate the outstanding performance of our method.

Introduction
The rise of pixel-level annotations in semantic segmentation
has spurred the need for methods to incrementally expand
model’s capacity to learn new classes without retraining the
model. Incremental few-shot semantic segmentation (IFSS)
can continuously segment new classes with scarce incre-
mental data while retaining to segment previously learned
classes. (Cermelli et al. 2020b,c; Shi et al. 2022).

The main challenges of IFSS emerge with two aspects:
semantic shift and semantic incompleteness. As shown in
Fig. 1(a), the semantic shift is inherited from incremental se-
mantic segmentation (ISS), where background classes from
previous learning steps may shift to object classes at the cur-
rent step or vice versa (Cermelli et al. 2020a; Douillard et al.
2021). Scarcity of new information and non-access to old in-
formation exacerbate shifts in IFSS, causing cognitive con-
fusion about the model of old knowledge and exacerbating
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Figure 1: (a) In IFSS, old classes Ct may shift to back-
ground class Bt+1 at current step or vice versa. (b) New-
class samples might be far from the ground-truth center, due
to semantic incompleteness caused by small and imbalanced
new-class dataset. (c) We remove the confounding effect of
semantic shift through intervention, obtaining unbiased dis-
tribution estimation of old classes. (d) To complete seman-
tics, we fuse features of old and new classes with guidance
of knowledge extracted from episode learning scheme.

catastrophic forgetting. In Fig. 1(b), samples deviating from
their ground-truth often lack some representative attribute
features, especially when new classes with several samples
are far away from compact clusters of old classes trained in
previous steps, resulting in semantic incompleteness.

Most previous incremental methods address semantic
shift and representative features of new classes by using
feature/label distillation with knowledge updating schemes
(Cermelli et al. 2020a; Zhang et al. 2022; Phan et al. 2022),
thus regulating new models to be predicable for either old
or new classes. However, they do not always behave consis-
tently in IFSS because they couple causal factors, i.e., data,



features, knowledge, and labels within incremental learning.
This inevitably hinders causality exploration among factors
for model bias adjustment, especially when dealing with im-
balanced new-class data in IFSS.

To avoid the coupling, we address problems of seman-
tic shift and incompleteness with a causal inference frame-
work that we explain and decouple causal relations among
data, features, knowledge, and labels using logical graphs
and formulas. Under the causal framework, we can answer
that 1) the confounder from background to old classes and
prediction cause semantic shift. As shown in Fig. 2(a), the
confounder is defined as a common cause of other vari-
ables, rendering spurious correlations among them, even if
they have no direct causal effects with each other (Yue et al.
2020). And 2) the difficulties to build convinced relation-
ship between new classes and prediction result in semantic
incompleteness (see Fig. 2(a)). Considering the extremely
small sample set, it is reasonable to build knowledge-driven
mappings rather than data-driven ones.

To this end, we propose to deconfound the causal ef-
fects that cause semantic shift and incompleteness in IFSS.
Specifically, we remove the confounder of semantic shift
with intervention, as shown in Fig. 1(c), where the causal ef-
fect between background and old class is removed to achieve
an unbiased estimation of the old class. The reason to use in-
tervention other than other deconfounders (Hu et al. 2021)
is that intervention ranks higher with operative actions; the
others would cause semantic bias by conditionally trans-
ferring shifted information from old to new class without
considering the imbalanced setting. Following the interven-
tion principle, we propose the Causal Intervention Module
(CIM) as shown in Fig. 2(b), which involves operations of
passively observing and actively adjusting. In each learn-
ing step, CIM observes the distribution of compact proto-
types/clusters in pre-trained feature space and adaptively ad-
justs prototypes via a prototype-attention scheme. It indi-
cates the directions toward a well-separated prototype dis-
tribution with less semantic bias.

In addition, knowledge proves to promote few-shot se-
mantic segmentation by sharing semantic properties like
“haired” and “quadruped” between old- and new-class sam-
ples. This inspires us to use knowledge for mitigation of se-
mantic incompleteness. As shown in Fig. 1(d), a Prototype
Refinement Module (PRM) is proposed to complete dis-
tinguish feature representations of new-class samples with
knowledge guidance. PRM fills the missing attribute fea-
tures of new-class samples via fusing features of old-class
prototypes guided by knowledge, which is referred to as de-
pendent relations from new class to old class and to predic-
tion (see Fig. 2(d)). We extract such knowledge by the pro-
posed episode learning scheme that creates variants of IFSS
episodes by sampling from plenty of old-class prototypes to
pretend “old” and “new” classes, learning meta knowledge
about how to fuse features of new-class and old-class proto-
types for semantic completion. To the best of our knowledge,
our work is the first to introduce causal inference into IFSS,
which explains the reason of semantic drift and incomplete-
ness and offers causal based solutions to reasonably decon-
found for unbiased predictions.

Figure 2: (a) The proposed structural causal model of IFSS
to explain semantic shift (C1) and incompleteness (C2). (b)
Removing the confounder of semantic shift with interven-
tion and constructing dependent relations to complete se-
mantics. (c) The prototype based structural causal model
for IFSS. (d) Mitigating semantic shift and incomplete-
ness through front door adjustment (do(C0:t)) and prototype
based dependent prediction (red lines). Relevant notations
are given in section IFSS in Causal View.

The contributions of this paper are as follows:
• We provide a causal analysis of semantic shift and in-

completeness in IFSS, thus guaranteeing the superiority
and reasonableness of our deconfounded method.

• We propose a causal intervention module to deconfond
semantic shift, which uses the intervention operation to
update prototypes of old class, thus mitigating the con-
founding bias.

• We propose a prototype refinement module to fill miss-
ing semantics, which guides feature fusion of new-class
samples and old-class prototypes with the knowledge ex-
tracted from an episode learning scheme.

Related Work
IFSS
To retain learned knowledge, ISS methods (Douillard et al.
2021; Phan et al. 2022; Yan et al. 2021; Shang et al. 2023;
Wang et al. 2024; Zhao, Yuan, and Shi 2023) utilize ei-
ther knowledge distillation or regularization. MiB (Cermelli
et al. 2020a) explicitly designs a novel distillation loss, re-
ducing semantic biases during distillation. PLOP (Douillard
et al. 2021) proposes a multi-scale distillation scheme, ex-
tracting inconsistent feature representations in scale to miti-
gate forgetting.

Existing methods design different learning paradigms for
IFSS. PIFS (Cermelli et al. 2020c) proposes prototype-
based incremental few-Shot segmentation, coupling proto-
type learning and knowledge distillation. EHNet (Shi et al.
2022) represents class-based knowledge using category and
hyper-class embedding. To address IFSS, they fail in pro-
viding a theoretical and causal solution by coupling data,
features, knowledge and labels for data-driven modeling.



Figure 3: Method overview. (a) In old class learning phase, model learns to segment old classes and stores old-class prototypes
in the memory pool. (b) During new class learning phase, model begins with PRM to refine incomplete new-class prototypes.
Then, model deconfounds the confounder causing semantic shift by utilizing CIM after old model, obtaining unbiased old-class
prototypes for unshifted predictions. We merge old-class and new-class predictions by NMS.

Causal Inference
Causal inference (Pearl, Glymour, and Jewell 2016; Pearl
and Mackenzie 2018; Yang, Zhang, and Cai 2020) is widely
used to mitigate spurious bias (Bareinboim and Pearl 2012;
Liu et al. 2021) and disentangle effects(Besserve et al.
2020). They can be divided into intervention (Yue et al.
2020; Zhang et al. 2020a; Wang et al. 2021) and counterfac-
tual (Niu et al. 2021; Yang et al. 2023). Intervention explic-
itly modifies SCM and eliminates spurious correlations by
adjusting distribution of observed. Counterfactual extracts
unbiased causal effects by observing the differences between
the counterfactual/constrained and ground-truth SCM.

IFSS in Causal View
Task Definition
IFSS contains consecutive training steps, where step 0 re-
quires quantity of samples to learn to segment old classes
C0. Subsequent steps from 1 to T gradually learn the new
classes C1 ∼ CT, where T is the total number of learning
steps. For t-th learning step (t>0), Ct contains k-shot sam-
ples (k is usually 1 or 5). The model learns to segment object
classes {C0:t−1, Ct}, and the background class Bt, and fi-
nally merges them as the prediction results St. Note that the
object categories of different learning steps do not overlap,
that is, ∀i, j and i ̸= j, Ci ∩Cj = ∅ . After the t-th learning
step, the model is tested on all object classes C0:t.

Causal Effect Analysis
We use the structural causal model (SCM) (Pearl 2009) to
explain the confound of semantic shift and semantic incom-
pleteness. At t + 1, we examine the causal relations of key
variables and construct SCM, which include new classes

Ct+1, old classes C0:t, background classes Bt+1 and pre-
diction St+1. Thus, the relations in Fig. 2(a) can be formu-
lated as C0:t → St+1&Bt+1 → St+1&Ct+1 → St+1. The
prediction is obtained with C0:t, Bt+1 and Ct+1 by

St+1 = F (C0:t, Bt+1, Ct+1), (1)

where function F (·) denotes the merge operation (e.g., non-
maximum suppression (NMS))(Neubeck and Gool 2006).
Specifically, three relations about Bt, Ct, St are as follows.
1) Bt+1 → C0:t. In IFSS, the causal graph evolves to high
complexity due to semantic shift. The old object class shifts
to background in Bt+1 interferes with the pre-learned old-
class knowledge, possibly assign old-class pixels as back-
ground at current learning step. 2) C0:t 99K St+1. Bt+1

acts as a confounder between C0:t and St+1, which results
in spurious correlations between old classes and prediction.
3) Ct+1 99K St+1. Due to the small new-class sample set,
it is difficult to resolve a categorical mapping from Ct+1

to St+1 with unobserved and confusing factors. A possible
solution to deconfound the above confounders represented
as 99K is causal intervention, removing the correlations and
building extra dependent mappings for prediction assistance.
However, the above solution encounters two modeling dif-
ficulties. First, regarding the fact Bt+1 satisfies the back-
door criterion in SCM, backdoor adjustment, the most pop-
ular mean to deconfond, is still not applicable to cut off
Bt+1 → C0:t because Bt+1 is unobserved for analysis. Sec-
ond, directly intervening on C0:t would remove all causal
relations that points to C0:t, including dependent mapping
Ct+1 → C0:t → St+1 that intended to be constructed to
mitigate incompleteness.

We propose to adopt prototypes as intermediate compo-
nents to intervene for prediction assistance in IFSS, which
are not only observable, but also compact and robust se-



mantic representations for classes. In prototype based SCM
for IFSS, we firstly insert old-class prototypes P0:t follow-
ing C0:t and Ct+1(Fig. 2(c)), where P0:t 99K St+1 is con-
founded due to the confounder Bt+1 interfering with the
favoured causal relation from old-class prototypes to pre-
diction, and Ct+1 99K Pt+1 99K St+1 is confounded due
to few samples of new classes to obtain convinced proto-
types. Then, we preform causal intervention on prototype-
based SCM (Fig. 2(d)), which severs Bt+1 → C0:t to build
C0:t → P0:t → St+1 through the front door adjustment
do(C0:t), since current condition satisfies its criterion, i.e.,
owning another observed causal route to skip the biased and
confounded relation. Afterwards, we build dependent pre-
diction (Fig. 2(d)), which completes the prediction capabil-
ity with another old-class prototypes based mapping Pt+1→
P0:t→St+1, thus deconfounding Ct+1 99K Pt+1 99K St+1

with aid of knowledge gained from old-class prototypes. Fi-
nally, unbiased causal effects without semantic shift and in-
completeness are resolved for robust prediction in IFSS.

Methodology
Model Overview
We introduce the proposed method with old class and
new class learning phases. In the first phase (Fig. 3(a)),
we train the model to segment old classes and store old-
class prototypes in the memory pool. Specifically, we feed
features extracted by ResNet-101 backbone, and ground-
truth masks into masked average pooling (MAP) (Zhang
et al. 2020b), computing old-class prototypes. Differing
from conventional semantic segmentation methods, we com-
bine the vectors of prototypes to segmentation head (Chen
et al. 2017) for boosting performance. We update the seg-
mentation model in current phase by cross-entropy loss be-
tween predicted and ground-truth masks.

In new class learning phase (Fig. 3(b)), the model learns
to segment new classes resisting semantic shift and incom-
pleteness. It is hard to construct convinced new-class pro-
totypes with limited information due to the small sample
set of new class. A Prototype Refinement Module (PRM) is
thus designed to refine incomplete prototypes of new class,
computing representative and compact feature clusters/pro-
totypes with guidance of category-level knowledge embed-
ded in PRM. Since the idea of meta learning is inherited
for knowledge extraction, PRM only requires to be trained
at the beginning of current phase. After refining, new-class
prototypes are stored in memory pool for later prediction.

To obtain prediction St+1, we first initialize new model
Mt+1 with the frozen parameters of the old model Mt and
prototypes stored in the memory pool, computing predic-
tions for new classes Ct+1. To deconfound semantic shift
with intervention, we then design a CIM following Mt and
memory pools, intervening to obtain a unbiased distribution
estimation of old classes for unshifted predictions C0:t. Fi-
nally, we merge C0:t and Ct+1 to compute St+1 by NMS.

We update new model with total loss Lt+1, which con-
sists of cross-entropy loss Lt+1

CE between new-class masks
and ground truth, and the distillation loss Lt+1

KD (Cermelli

Figure 4: Causal intervention module (CIM) involves op-
erations of passively observing and actively adjusting to
deconfond. In observing, CIM predicts old-class segmen-
tation masks with the gathered information about all old-
class prototypes. In adjusting, we adaptively adjust old-class
prototypes guided by the attention weights achieved by the
propose prototype-attention scheme, intervening the con-
founder for unshifted predictions.

et al. 2020a) between old class masks and predictions:
Lt+1 = 1

|Ct+1|
∑

(x,y)∈Ct+1
Lt+1
CE (x, y) + λLt+1

KD(x, y)

Lt+1
CE (x, y) = − 1

|I|
∑

i∈I log p
t+1
x (i, yi)

Lt+1
KD(x, y) = − 1

|I|
∑

i∈I

∑
c∈C0:t

ptx(i, c) log p̂
t+1
x (i, c)

(2)
where λ is a hyper-parameter, and p̂t+1

x (i, c) is the unbiased
probability that Mt+1 classifies pixel i as old class c:

p̂t+1
x (i, c) =

{
pt+1
x (i, c), if c /∈ Bt+1∑
k∈Ct+1

pt+1
x (i, k), if c ∈ Bt+1.

(3)

Causal Intervention Module
Based on causal analysis of semantic shift in IFSS, we sum-
marize that old-class prototypes P0:t satisfies the front door
criterion in an ordered and firmed relation C0:t → P0:t →
St+1. Following principles of front door adjustment, we first
observe distributions of old classes for information gather-
ing and then remove the confounder causing semantic shift
with intervention operation do(·), thus predicting unbiased
segmentation masks:

P(St+1|do(C0:t= c)) =
∑

p
P(P0:t=p|C0:t=c)

×
∑

c′
P(St+1|C0:t=c′,P0:t=p)P(C0:t=c′),

(4)

where function P(·) calculates probability. More pre-
cisely, P(St+1|do(C0:t = c)) predicts the unbiased masks
of old class c after intervention. Similarly, P(St+1|C0:t =
c′, P0:t = p) predicts mask of one old class c′ with aid of
one prototype p. P(P0:t = p|C0:t = c) is assumed as weight
about one prototype p for the resolving old class c, which
adaptively adjusts the importance of different prototypes for
c during incremental learning. We calculate such weight by
negatively correlating it with the distance between the center
of c and feature vectors of prototype p. Note that we ignore
the class ratio weight P (C0:t = c′), i.e., the prior probability
of old classes, which is included in parameters of old model.



Figure 5: Structure design of prototype refinement module
(PRM). (a) The proposed episode learning scheme learns
knowledge on how to fuse features for semantic complet-
ing. (b) An encoder-decoder is utilized to fuse features of
new-class prototypes Pn

new and old-class prototypes Pn
old

guided by the pre-learned and transferred knowledge, pre-
dicting with completeness semantics.

Based on the above modeling, we construct CIM with ob-
serving and adjusting operation (Fig. 4). During observation,
CIM predicts old-class segmentation masks with the gath-
ered information about all old-class prototypes p clustered
by the old model Mt, i.e., Cp

0:t =
∑

c′∈C0:t
P(St+1|C0:t =

c′, P0:t = p) = Mt(p). During adjusting, we firstly propose
prototype-attention scheme to compute prototype weight
Wp,t based on the distance between p and old classes at t-th
learning step:

Wp,t=P(P0:t=p|C0:t=c)=Softmax(−∥p−ϕ0:t∥22) (5)

where ϕ0:t denotes the center of old classes, and ∥·∥2 refers
to Euclidean distance. By calculating prototype-wise atten-
tion values, CIM successfully indicates directions towards a
well-separated prototype distribution with less semantic bias
to deconfound shift. Then, we adaptively adjust prototypes
by multiplying them with their corresponding weights Wp,t.
Finally, we use NMS to merge the prototype-based old-class
prediction masks Cp

0:t, computing a unbiased old-class mask
mC0:t

:

mC0:t
= arg max

c∈C0:t

H(
∑

p
Wp,tC

p
0:t, c), (6)

where function H(·, c) denotes the probability that each
pixel in a mask belongs to the class c.

Prototype Refinement Module
Since PRM is designed to refine incomplete new-class pro-
totypes guided by the knowledge pre-learned from old-class
prototypes, we propose an episode learning scheme to train
PRM following rules of episodic training (Vinyals et al.
2016; Wang et al. 2022).

As shown in Fig. 5(a), the proposed episode learning
scheme consists of N episodes, each episode drawing from

old classes C0:t and formulating as an IFSS task with only
two incremental learning steps, i.e., initialization at t = 0
and the consecutive learning step at t = 1. During t = 1,
C0 is pretended as source of “old” and “new” classes for
the first incremental learning step, where the number of new
classes is defined as |C1| and old classes are the remain-
ing ones C0 − C1. Note that |C1| is far smaller than that
of old classes |C0 − C1|, acting as simulation of few-shot
learning scenario. We further extract prototype features of
each episode for training. Specifically, we directly obtain
old-class prototypes Pb from the memory pool, and we get
incomplete new-class prototypes Pn by feeding k-shot sam-
ples into backbone and MAP, being similar with the process
of old-class learning phase.

After preparation, all prototypes are fed into an encoder-
decoder model (Fig. 5(b)) and learn knowledge to fuse fea-
tures of new-class and old-class prototypes for semantic
completing. Specifically, we first encode the input proto-
types into a unified low-dimensional embedding space, and
then refine new-class prototypes inside space via a decoder:

P̂n = D[
∑

i
αiE(Pb) +

∑
j
βjE(Pn)]. (7)

Here, E(·) and D(·) denote encoder and decoder structure,
respectively. i and j denote index of old and new classes, re-
spectively, and αi denotes the coefficient of i-th old-class
prototype Pi. Note that the coefficients of j-th new-class
prototypes βj should be fixed as 1 because the predicted new
class prototypes should be regulated not exceeding too much
from the input new-class prototypes.

Experiments
Experimental Setup
Datasets. We conduct experiments on two widely used ISS
datasets, i.e., Pascal-VOC 2012 (Everingham et al. 2015)
and ADE20k (Zhou et al. 2017).

Metrics.We consider four mIoU metrics. We use the av-
erage mIoU on old classes C0 (full) and new classes C1:T

(full) to evaluate the anti-forgetting capability of old classes
and learning ability of new classes. We use the average
mIoU on new classes under 1-shot and 5-shot, respectively
(denoted as C1:T (1/5-shot)) to evaluate the performance of
our method.

IFSS settings. 1) Tasks. For Pascal-VOC 2012, we con-
sider three tasks, including 19-1 (T=2), 15-5 (T=2), and 15-1
(T=6). For ADE20k, we similarly consider three tasks, in-
cluding 100-50 (T=2), 50-50 (T=3), and 100-10 (T=6). 2)
Disjoint or overlapped. As described in (Cermelli et al.
2020a), images only contain pixels of the previous or cur-
rent classes in the disjoint settings. In the overlapped set-
tings, images may contain pixels of future classes, which
presents a more realistic and challenging scenario, leading
us to conduct experiments under such setting.

Baselines. The simple fine-tuning (FT) on each Ct are
reported as the baseline. We compare our method with
three state-of-the-arts IFSS methods, namely GIFS (Cer-
melli et al. 2020b), PIFS (Cermelli et al. 2020c) and EHNet
(Shi et al. 2022)). In addition, four popular ISS methods:



19-1 (T=2) 15-5 (T=2) 15-1 (T=6)

Method 0-19
(full)

20
(full)

20
(5-shot)

20
(1-shot)

0-15
(full)

16-20
(full)

16-20
(5-shot)

16-20
(1-shot)

0-15
(full)

16-20
(full)

16-20
(5-shot)

16-20
(1-shot)

FT 6.80 12.90 0.08 0.00 2.10 33.10 1.88 0.04 0.20 1.80 1.30 0.00
GIFS 64.31 33.72 25.90 14.39 64.70 37.41 32.00 17.40 40.77 14.93 8.32 4.25
PIFS 63.75 34.47 26.41 14.68 60.90 38.92 33.40 18.62 40.34 14.81 9.36 4.33
EHNet 56.71 36.23 30.23 13.21 57.10 45.70 33.42 19.73 39.38 17.29 10.71 6.05
ILT 67.10 12.30 12.70 0.25 66.30 40.60 10.29 5.96 4.90 7.80 3.64 0.12
MiB 70.20 22.10 17.13 4.10 75.50 49.40 16.10 6.25 35.10 13.50 2.75 2.81
EM (replay) 73.76 43.42 23.50 6.34 75.56 49.89 17.11 7.87 75.77 40.34 4.52 2.47
PLOP 75.35 37.35 15.42 0.86 75.73 51.71 11.23 2.52 65.12 21.11 2.44 0.68
PIFS+CIM 70.89 35.63 26.87 14.65 67.11 39.21 33.78 18.91 52.76 18.95 9.81 5.62
EHNet+CIM 64.36 36.88 30.75 13.74 65.25 46.33 33.63 20.03 50.21 18.17 10.98 6.83
MiB+PRM 71.04 27.45 22.59 12.29 75.54 49.34 24.51 15.36 38.14 17.29 9.35 5.06
PLOP+PRM 74.73 38.29 23.85 10.29 74.98 52.14 24.81 13.94 65.47 22.89 10.71 5.91
Ours 76.04 38.77 31.22 15.32 76.30 50.67 34.20 21.37 66.49 24.19 15.44 7.42

Table 1: mIoU results of comparative methods on Pascal-VOC 2012 dataset under different IFSS settings.

100-50 (T=2) 50-50 (T=3) 100-10 (T=6)

Method 0-100
(full)

101-150
(full)

101-150
(5-shot)

101-150
(1-shot)

0-50
(full)

51-150
(full)

51-150
(5-shot)

51-150
(1-shot)

0-100
(full)

101-150
(full)

101-150
(5-shot)

101-150
(1-shot)

ILT 18.29 14.40 3.82 1.42 3.53 12.85 3.95 1.35 0.11 3.06 1.25 0.07
MiB 40.52 17.17 6.85 3.22 45.57 21.01 7.12 3.83 38.21 11.12 2.63 1.71
PLOP 41.87 14.89 5.44 2.93 47.33 20.27 5.68 3.47 38.59 14.21 1.97 0.61
MiB+PRM 40.67 17.83 8.24 4.87 45.32 21.27 8.34 5.77 36.18 13.81 4.07 2.16
PLOP+PRM 41.78 17.03 8.61 4.53 46.81 20.94 8.17 5.08 38.77 14.47 3.88 2.14
Ours 41.89 17.92 10.41 6.84 46.57 21.54 10.89 8.07 38.94 13.93 6.96 4.19

Table 2: mIoU results of comparative methods on ADE20K dataset under different IFSS settings.

ILT (Michieli and Zanuttigh 2019), MiB (Cermelli et al.
2020a), EM (Yan et al. 2021) and PLOP (Douillard et al.
2021) are also compared.

Comparison with SOTAs
Comparison with IFSS methods on Pascal-VOC 2012.
Table 1 shows the experimental results with 19-1 (T=2),
15-5 (T=2) and 15-1 (T=6) compared with IFSS methods.
Compared with the latest EHNet method, our method im-
proves mIoU of old classes (0-15) and new classes (16-20)
by 33.63% and 10.88% with 15-5 (T=2) setting, respec-
tively. In both 1-shot and 5-shot segmentation tasks, our
method outperforms EHNet in all cases. This proves that our
method can strike the balance between anti-forgetting of old
classes and learn new ones.

Comparison with ISS methods on Pascal-VOC 2012.
In Table 1, our method outperforms all other methods on
C0 and C1:T (1/5 shot) mIoU except EM, which uses re-
play technique that partially preserves old class data to re-
sist forgetting, might causing severe privacy concerns. With
the short 15-5 (T=2) setting, our method outperforms PLOP
by 0.75% on mIoU of old classes (0-15), which indicates
the capability of our method in resisting forgetting. With 5-
shot and 1-shot, the mIoU scores on new classes (16-20) is
greatly increased to 34.20% and 21.37%, respectively. This
proves that our method can effectively fuse features between
new-class and old-class prototype for semantic completing.
With the long 15-1 (T=6) setting, the mIoU result of new
classes (16-20) is greatly increased to 15.44% and 7.42% un-

der 5-shot and 1-shot, respectively. It proves that our method
can resist forgetting in long-term incremental learning.

Comparison with ISS methods on ADE20k. Table 2
shows results with 100-50 (T=2), 50-50 (T=3) and 100-10
(T=6) settings. With the short 100-50 (T=2) setting, our
method outperforms PLOP by 0.02% and 20.35% on old (0-
100) and new (101-150) classes, respectively. Moreover, the
mIoU result achieved by our method increases to 6.84% and
10.41% with 1-shot and 5-shot setting, respectively, which
is superior to the comparative methods. Though the mIOU
result of our method is slightly lower than that achieved by
PLOP on old classes (0-50), our method is more robust and
outperforms the others in most cases, especially With the
long 100-10 (T=6) setting, mIoU of new classes (101-150)
by our method is greatly increased to 6.96% and 4.19% un-
der 5-shot and 1-shot settings, respectively.

Results of comparative methods embedded with CIM
and PRM. Considering CIM and PRM are model-agnostic,
we embed CIM into IFSS methods for unbiased predictions
of old classes and PRM into ISS methods. As shown in Table
1, on Pascal-VOC 2012, the embedded EHNet+CIM with
19-1 (T=2), 15-5 (T=2), and 15-1 (T=6) settings improve
mIoU on old classes by 13.49%, 14.27%, and 27.50%, re-
spectively. By embedding PRM into MiB and PLOP, the
segmentation performance on new classes under few-shot
setting can be greatly improved. By embedding CIM into
PIFS and EHNet, the anti-forgetting capability is improved.
As shown in Table 2, on ADE20K, PLOP+PRM improves
mIoU on the new class by 46.40%(1-shot) and 43.84%(5-



Figure 6: Qualitative results of our method on Pascal-VOC
2012 dataset with 15-5 (T=2) setting.

Module 15-5 (T=2)

PRM CIM 0-15
(full)

16-20
(full)

16-20
(5-shot)

16-20
(1-shot)

# # 60.81 35.91 16.10 6.25
! # 64.35 48.30 31.15 19.27
# ! 74.11 42.83 18.17 7.93
! ! 76.30 50.67 34.20 21.37

Table 3: Ablation study of PRM and CIM on Pascal-VOC
2012 dataset with 15-5 (T=2) setting.

Distillation Loss 0-15
(full)

16-20
(full)

16-20
(5-shot)

16-20
(1-shot)

KD 61.41 38.71 21.66 12.94
POD 66.72 41.29 24.87 15.54

Local POD 75.81 50.89 31.19 20.65
UNKD (Ours) 76.30 50.67 34.20 21.37

Table 4: Results with different distillation loss on Pascal-
VOC 2012 dataset with 15-5 (T=2) setting.

shot) with 50-50 (T=3) setting. Combing the results of Table
1 and Table 2, we observe that the proposed CIM and PRM
are practical and efficient for various IFSS and ISS methods.

Ablation Study
Table 3 shows the ablation results of PRM and CIM on
Pascal-VOC 2012 dataset. When we remove PRM, the seg-
mentation performance on new classes decreases sharply.
With full-shot, 1-shot and 5-shot settings, mIOU on new
classes decrease to 15.47%, 46.87%, and 62.89%, respec-
tively. This proves that PRM enhances feature representabil-
ity successfully by introducing the transferred knowledge
and old-class prototypes. When we remove CIM, mIOU on
old classes drops 15.66%, which proves CIM can effectively
solve the semantic shift problem and prevent forgetting on
old-class information.

Based on Eq.(2), the comparative results of different dis-
tillation losses, including KD, POD (Douillard et al. 2020),
local POD (Douillard et al. 2021) and UNKD we used (Cer-
melli et al. 2020a) are shown in Table 4. As observed,
UNKD performs better than other distillation losses in most
cases UNKD is inferior to the second best local POD by
only 0.22% under 16-20 (full) setting. This indicates the in-
consistency of such distillation strategy during training. Be-

0-15
(full)

16-20
(full)

16-20
(5-shot)

16-20
(1-shot)

λ 5 75.70 50.32 34.21 21.33
10 76.30 50.67 34.20 21.37
20 76.33 48.92 33.76 21.25

Lr 0.05 75.32 50.60 33.42 21.51
0.01 76.30 50.67 34.20 21.37

0.001 75.58 49.33 33.12 20.89

Table 5: Results with different value of hyper-parameter on
Pascal-VOC 2012 dataset with 15-5 (T=2) setting.

Episodes 15-5(T=2) 15-1 (T=6)
Step1 Step1 Step2 Step3 Step4 Step5

1000 320.7s 317.2s 298.4s 301.7s 314.3s 325.4s
2000 634.1s 632.1s 613.7s 613.0s 625.6s 649.0s

Table 6: Results of pre-training time for PRM.

sides, we can analyse that POD fails to improve with the
new classes (16-20) and would be easily to be overfitting
with new classes due to plasticity property.

Table 5 shows the ablation results with different λ and Lr
values, where λ is the weight of the distillation loss, Lr is
the learning rate for Step 0, and the learning rate for further
steps is 0.1*Lr. We use λ = 10 for all experiments for a fair
comparison. Table 6 shows results of PRM pre-training time
on Pascal-VOC 2012. PRM is pre-trained before each Step
to learn how to use all previous class knowledge to supple-
ment the semantics of new classes. Note that our CIM mod-
ule does not require training.

Qualitative Experiments
Visualization results on Pascal-VOC 2012 dataset with 15-5
(T=2) setting are shown in Fig. 6. Specifically, our method
can maintain the segmentation of old classes with only one
“plane” class. Dealing with the complex scene shown in the
second image, our method can accurately segment “bus” at
step 0, while the segmentation of person is incorrect due
to its small size and edge location. At step 1, our method
can learn new class “car” while retaining the knowledge on
old class “bus” and “person”. Even in few-shot setting, our
method can segment the car well. In the third image, our
method confuses the future class “bicycle” with the current
class “person” at step 0, but learns to segment “bicycle” at
step 1. The fourth image shows a failure, where our method
forgets old class “horse” after incremental learning. This is
because the small and imbalanced new-class dataset could
cause serious cognition confusion in few-shot setting.

Conclusion
This paper proposes a causal framework to deconfound se-
mantic shift and incompleteness. CIM is proposed to resist
semantic shift by removing the confounder with interven-
tion. PRM is proposed to complete semantics with the trans-
ferred knowledge for feature fusion. Experimental results
demonstrate that our method outperforms the existing IFSS
and ISS methods. An extensive study shows the rationality
and efficiency of the proposed causal framework for IFSS.
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