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Abstract— There is a rising concern about healthcare
system security, where data loss could bring lots of dam-
ages to patients and hospitals. As a promising encryption
method for medical images, DNA encoding own charac-
teristics of high speed, parallelism computation, minimal
storage, and unbreakable cryptosystems. Inspired by the
idea of involving Large Language Models(LLMs) to improve
DNA encoding, we propose a medical image encryption
method with LLM-enhanced DNA encoding, which consists
of LLM enhancing module and content-aware permuta-
tion&diffusion module. Regarding medical images gener-
ally have plain backgrounds with low-entropy pixels, the
first module compresses pixels into highly compact signals
with features of probabilistic varying and plausibly deniabil-
ity, serving as another LLM-based layer of defence against
privacy breaches before DNA encoding. The second mod-
ule not only adds permutation by randomly sampling from
a redundant correlation between adjacent pixels to break
the internal links between pixels but also performs a DNA-
based diffusion process to greatly increase the complexity
of cracking. Experiments on ChestXray-14, COVID-CT and
fcon-1000 datasets show that the proposed method out-
performs all comparative methods in sensitivity, correlation
and entropy.

Index Terms— Medical Image Encryption, Large Lan-
guage Models, Plausible Deniability, DNA Coding

I. INTRODUCTION

HEALTHCARE systems are particularly vulnerable to
cyber-attacks, due to their significant economic interests

and weak defences. Unauthorized activities such as data loss,
theft, modification, attack, and transfer without official au-
thorization are defined as cyber-security breaches for medical
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data. Reported by [1], at least 150 million patients’ personal
information was illegally stolen from 94% of healthcare com-
panies between 2009 and 2014.

As the most informative form of medical data, researchers
have proposed several methods for encryption of medical
images. To create the key sequence in a generative manner,
Ding et al. [2] propose DeepKeyGen, which adopts GAN to
generate the private key and designs a transformation domain
to guide the generation process. Inspired by the Lorenz system,
Singh et al. [3] propose EiMOL, where an optimized random
sequence is generated through directed weighted complex
network GDWCN-PSO, thus obtaining the cipher messages
with Lorenz system. To promote secure healthcare, Wu et al.
[4] propose a content-aware DNA computing system, which
utilizes a random mechanism to increase the difficulty of
cracking. Due to the promising properties of high speed, par-
allelism computation, and unbreakable cryptosystems, DNA
encoding is now widely applied to encrypt medical images
for safe and convincing data transfer.

Following the idea of utilizing DNA encoding for encryp-
tion, we propose an LLM-enhanced DNA encoding method
to encrypt medical images, which has realized two pur-
poses: First, probabilistic varying and plausible deniability
introduced by LLM. Utilizing ImageGPT as LLM, it firstly
compresses low-entropy medical images into compact and
optimal-encoded signals, which would be lossless for image
content and friendly for computation with further operations
like DNA encoding and so on, ensuring fast and easy-
implement performance. Afterward, ImageGPT serves as an
explicit probabilistic model to first generate random masks
for occlusion and then predict the occluded pixels to involve
distribution obeyed variations, thus creating varying signals
of input medical images for DNA-based encryption. In the
later decryption process, ImageGPT will recover the occluded
part to keep content consistent in the transmission. Therefore,
ImageGPT acts as a ’black box’ as well as another layer of
defense to disavow the true meaning of the original image,
thus acquiring the feature of plausible deniability.

Second, content-aware securing capability is introduced
by operations of permutation and diffusion. Regarding high-
dimensional images as a natural source bringing complexity,
we design a content-aware algorithm to randomly sample
from correlations of adjacent pixels, thus generating permuta-
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tion to increase the complexity of encrypted data. Following
permutation, we design DNA-based diffusion operations to
imitate biological diffusion, i.e., a passive transport process
that moves bases across sequences to increase complexity. The
contributions are three-fold:

• The proposed LLM enhancing module serves as another
layer of defense before DNA encoding, realizing plau-
sible deniability and probabilistic varying to disavow
meaningful parts of input medical images.

• The proposed content-aware permutation&diffusion mod-
ule involves the correlation between adjacent pixels and
DNA-based diffusion operations to increase complexity
in cracking greatly.

• Experiments demonstrate that the proposed method out-
performs the comparative methods on popular bench-
marks.

The rest of the paper is organized as follows. Section II
reviews the related work. The framework overview, details of
the proposed LLM enhancing module, and the content-aware
permutation&diffusion module are discussed in Section III.
Section IV presents the experimental results and discussions.
Finally, Section V concludes the paper.

II. RELATED WORK

In this section, we divide related work into three parts,
i.e., cyber-security in healthcare systems, statistic theory in
encryption, and image encryption.

A. Cyber-security in Healthcare Systems
A rising demand exists to safeguard personal information

from unauthorized access within the healthcare domain. There-
fore, numerous researchers [5]–[7] have devoted extensive
efforts to solve security issues in healthcare systems.

For example, Acar et al. [8] propose a lightweight Privacy-
Aware Continuous Authentication protocol (PACA), which
authenticates users with their biometrics in a privacy-aware
manner, thus significantly enhancing defense capabilities.
Later, Grammatikis et al. [9] assess the severity of the IEC
60870-5-104 protocol and propose Intrusion Detection and
Prevention System (IDPS) to automatically mitigate it, which
transforms the automated mitigation into a multiarmed bandit
problem, thus increasing the accuracy of intrusion detection
in healthcare systems. To ensure adequate medical services
in remote areas, Soni et al. [10] propose an intelligent user
recognition mechanism, which ascertains the possibility of
risky behaviors for idle users, thus offering enhanced security
over authentication systems.

With the implementation of the cloud to construct healthcare
systems, significant risks in data transmission have been raised
as a focus topic by several researchers [4], [6], [11]. For exam-
ple, Xu et al. [11] propose a security performance intelligent
prediction algorithm, including an improved convolutional
neural network with four convolution layers and four inception
block, which analyzes the security of IoT-enabled healthcare
networks in real-time. Later, Ji et al. [12] propose an Intelli-
gent Reflective Surface (IRS)-driven healthcare system, which
transmits independent medical data streams to doctors with

a Multiple-Input Single-Output (MISO) setting, thus keeping
medical data secret from patient spies. Simultaneously, Wu
et al. [4] propose a novel content-aware DNA computing
system, which transmits cipher medical images from sender to
receiver with a randomly DNA encoding and a content-aware
permutation&diffusion module, thus guaranteeing privacy and
promoting secure healthcare environment.

Unlike the above approaches, we propose a plausibly de-
niable medical image encryption method, which utilizes an
LLM-enhancing module to generate plausible medical images
and a content-aware permutation&diffusion module to increase
the complexity of cracking, thus safeguarding the healthcare
system.

B. Statistic Theory in Encryption

Statistical theory [13] is a fundamental support for encryp-
tion algorithms. Many researchers [14]–[16] utilize classical
statistical models to encryption scheme. For example, Liang
et al. [15] propose the first and concrete deterministic finite
automata-based functional PRE (DFA-based FPRE) system,
which generates a new ciphertext by a semi-trusted proxy
with a probability distribution, thus increasing the flexibility
of delegating users’ decryption rights. However, the proba-
bility distribution turns messy when meeting too many new
nodes. To make probability distribution regular, Kwon et al.
[13] propose an additive statistical method for data leakage
analysis, employing an Exponential Mixture Model (EMM)
to predict the leakage distribution only by a few leakage data,
thus estimating any shape of leakage distribution regardless of
new nodes or operating conditions.

Different from the classical statistical models, the neural
network-based statistical methods [17]–[19] obtain convincing
results by training on abundant of parameters. For example,
Kato et al. [17] propose a new encryption method with Re-
current Neural Networks (RNNs), which predicts the F0 value
from a spectrum and predicts a target sinusoidal waveform
from the raw speech waveform, thus improving the estimating
of noise-robust fundamental frequency signals. To characterize
the soft error-induced data disturbance on each neuron, Huang
et al. [18] utilize central limit theorem to develop a series of
statistical models, which tackles soft errors and accelerates
fault simulations of neural networks. To improve efficiency
while ensuring security, Cai et al. [19] propose a Secure
and efficient Federated learning scheme (SecFed) based on
multi-key, which preserves user privacy and delegates some
operations with an offline protection mechanism, thus ensuring
the operations of disconnected participants.

Notably, numerous scholars [20]–[22] validate that LLMs
equips with internal statistical characteristics, and which can
be further applied to a range of downstream tasks. Inspired
by auto-regressive transformers, Yu et al. [23] extend the
statistical capabilities of existing models, developing a multi-
scale decoder architecture to handle sequences with millions
of bytes. This makes an ideal choice for compressing text,
images, and other data along with their associated distribu-
tions. To assess the statistical and causal reasoning ability of
LLMs, Liu et al. [24] introduce the Quantitative Reasoning
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with Data (QRData) benchmark, which carefully constructs a
dataset with 411 main questions and 290 auxiliary questions,
thus acquiring accurate results of various LLMs. Inspired by
the internal statistical characteristics of LLMs, we propose an
LLM-enhanced DNA encoding method, which utilizes LLMs
to decrypt medical images with the given keys. With the
specific design for generating plausible images, we add another
defense layer for medical image encryption.

C. Image Encryption
Image encryption aims to protect the inner information from

unauthorized acquisition. Compared with text encryption, the
difficulty of image encryption tasks is much greater [25]. We
roughly divide image encryption into traditional methods [26]–
[29] and deep learning-based methods [30]–[32].

For traditional image encryption methods, researchers uti-
lize various mathematical models to realize encryption algo-
rithms. For example, Zhang et al. [33] propose a 2D Lag-
Complex Logistic Map (LCLM), which extends variables from
real numbers in the conventional 2D logistic map to complex
field, performing well in chaotic intervals, good ergodicity,
and unpredictable trajectories. Later, Huang et al. [34] pro-
pose a real-time encryption system for Distribution Energy
Systems (DESs). By constructing a 13-D chaotic system
and simple encryption algorithm, they ensure the system’s
consistent running and resist malicious attacks in DESs. Some
researchers found that although many methods show good
encryption performance, they were often tested under ideal
conditions. When confronted with more realistic scenarios,
these methods frequently proved to be inefficient. Based on
this observation, Zhang et al. [29] conduct more rigorous
testing on certain DNA encryption algorithms, obtaining more
credible evaluation results.

Unlike traditional methods, researchers utilize deep
learning-based methods to encrypt images by training
multiple-layer networks. For example, Ding et al. [30] pro-
pose a Deep learning-based image Encryption and Decryption
Network (DeepEDN), which integrates the image encryption
and decryption algorithms into deep neural networks, facili-
tating the development of deep medical image encryption. To
increase the compression efficiency of color images, Wang
et al. [35] propose the Encryption-Then-Lossy-Compression
(ETLC) scheme, which utilizes a nonuniform down-sampling
strategy and a customized deep network to integrate uniform
and random sampling, thus achieving an arbitrary compression
ratio. Furthermore, Gao et al. [36] propose a specially designed
BP neural network to encrypt various types of images, boasting
greater robustness and efficiency. Considering the high dimen-
sion of medical images, we put the encryption process into the
LLM-enhanced DNA encoding and decoding phase, fulfilling
the operation in an advanced compressed manner.

III. METHODOLOGY

In this section, we highlight the proposed medical image
encryption method in detail. We divide this section into
three parts, including framework overview, LLMs enhancing
module, and content-aware permutation&diffusion module.

Fig. 1. The proposed framework includes the sender and receiver,
which are opposite in operations.

A. Framework Overview
Fig. 1 illustrates the proposed framework, which consists

of ImageGPT as an LLM enhancing module, content-aware
permutation&diffusion module, and DNA encoding&decoding
process. Specifically, we express encryption and decryption
processes as Eq. 1 and 2, respectively. Inside the sender, we
define the input image and initial key as I and K, where
they are fed into the LLM enhancing module to generate
masked sequence SM and key sequence SK , owing features
of plausible deniability and probabilistic pixel varying. Then,
SM and SK are transformed as S

′

M , S
′

K with DNA coding,
and fed into the content-aware permutation&diffusion module,
resulting in a permutated and diffused sequence SN . Finally,
SN and SI are further processed by the DNA decoding
process, generating the cipher image C for transmission.

(SM , SK) = ImageGPT (I,K)

(S
′

M , S
′

K) = DNAen(SM , SK)

SN = PD(S
′

M , S
′

K)

C = DNAde(SN , SM )

(1)

where ImageGPT (), PD(), DNAen(), DNAde() represent
operations of LLM-based enhancing module, content-aware
permutation&diffusion module, DNA encoding and decoding,
respectively.

The receiver first feeds C and SK into the DNA encoding
process, which generates sequences SP and SQ. Then, we
input SP and SQ into the content-aware confusion&diffusion
module, which recoveries the masked sequence SR. Then, SR

are transformed as S
′

R with SP during DNA decoding process.
Finally, SK and S

′

R are put into the LLM enhancing module,
which randomly samples S

′

R to recover the image IR. It’s
noted that IR created by ImageGPT with a wrong key would
make attackers believe they achieved the right image, thus
being equipped with the feature of plausible deniability.

(SP , SQ) = DNA
′

en(C, SK)

SR = PD
′
(SP , SQ)

(S
′

R) = DNA
′

de(SP , SR)

IR = ImageGPT
′
(SK , S

′

R)

(2)

where DNA
′

en(), DNA
′

de(), PD
′
(), ImageGPT

′
() repre-

sent opposite operations of that in Eq. 1.
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Fig. 2. The compressed encoding and probabilistic prediction process
of LLM enhancing module.

Algorithm 1: The LLM Enhancing Module in Sender
Input: Image I , Key K
Output: Masked Sequence SM , Key Sequence SK

1 CI ← C7(I)⊕ C5(I)⊕ C3(I)

2 ŜI ← 1
N2

∑N−1
i=0

∑N−1
j=0 (Relu(CI))ij

3 SI ← Reshap(ŜI); SK ← Reshap(K)
4 SF ← (SI + SK)%256
5 Seed← Rand(100, 200)
6 SM ← ImageGPT (SF , Seed)
7 return SM , SK ;

B. LLM Enhancing Module

To realize plausible deniability and probabilistic varying,
we propose an LLM enhancing module, where we illustrate
its process in Fig. 2, Algorithm 1, Algorithm 2 with steps
of compressed encoding and probabilistic prediction. Notably,
Relu() means the relu activation function, and Reshap()
transfers a N ×N pixels sequence to a 1×N2 form.

Compressed Encoding. Assuming attackers are familiar
with image encryption algorithms, one important question
arises: what if the attack could reveal all possible keys to
crack? One solution is to additionally encode the cipher
image, which could be decoded to a valid plausible image
using any key. Differing from traditional algorithms [37] using
statistical functions as additional encoding, we introduce pre-
trained LLM as a powerful and dynamic model to realize
plausible deniability. Regarding the LLM enhancing module as
a compressor, we achieve optimal entropy form of encoding
even if the pixel values of the input image are not dyadic
[22], being difficult in optimally encoding with traditional
algorithms. Based on optimal encoding, further by-product
formulations such as DNA encoding could be lossless for
image content and friendly for computation, ensuring fast and
easy-implement performance as a defencing layer.

Regarding pixel values of the input image as sequences,
an optimal variable-length code book could encode images
with their occurring probabilities, thus achieving an optimal

Algorithm 2: The LLM Enhancing Module in Re-
ceiver

Input: Key Sequence SK (which consists of right key
sequence Kr or wrong key sequence Kw),
Masked Sequence S

′

R

Output: Recovered Image IR (which consists of
original image IOri or plausible image IPla)

1 if Kr then
2 IOri ← ImageGPT

′
(Kr, S

′

R)
3 else
4 IPla ← ImageGPT

′
(Kw,S

′

R)
5 end
6 IR ← (IOri or IPla)
7 return IR;

compression rate with low entropy for further processes. Since
the computation cost will increase exponentially, we must take
measures to reduce the context length of transformer architec-
ture under dense attention conditions. The GPU devices could
not afford such a vast computation cost when calculating a
medical image with 255 × 255 pixels and larger, where a
single layer would take tens of thousands of times to create
the attention logits. To tackle this issue, we transfer the input
gray-scale medical image to low-resolution sequences with
32× 32, 48× 48, or 64× 64 pixels. However, the image size
is still hard to calculate even with 32× 32 pixels for a dense
attention mechanism. Inspired by early color display palettes
[38], we design a special palette for grayscale medical images,
which differs from the previous RGB palettes by clustering
pixel values using k-means with k = 128. We created 3 times
smaller than the original image yet still kept the most details.

Specifically, we discuss the details of compressed encoding
in Algorithm 1. Since most of the medical images have
sparse backgrounds, it was essential to compress the extra
background pixels for saving storage. We first fed the Image
I and Key K into the proposed LLM enhancing module, then
I will be convolved by several 7 × 7, 5 × 5, and 3 × 3
kernels to compress pixels. Subsequently, the pixels will be
concatenated and transferred with relu activation functions,
which were adapted by pooling operation to further create
a low-dimensional image. To increase the random possibility
of encryption, we transfer the pixel to a one-dimensional
sequence to match the key sequence, both of which were
fused to create a new sequence. Finally, we set seeds by
random generated a number between 100 to 200, which are
utilized with ImageGPT to mask the fused sequence randomly.
Benefiting from the powerful auto-regressive ability of the
sequence Transformer, the ImageGPT could predict pixels
with high accuracy, which provides safeguards against random
occlusion.

Probabilistic Prediction. Being a probability model that
has an observed quantity of images, LLM could generate
plausible medical images if attackers use the wrong keys.
On the contrary, traditional algorithms tend to return vision-
valid images that are too unrelated to the context. Guided
by the probability distribution from ImageGPT, the context-
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Fig. 3. The design of content-aware permutation&diffusion module.
Given DNA encoded sequence, the module utilizes several algorithms
to permute and diffuse sequence.

setting mechanism inside LLM towards producing responses
that align with expected responses, makes it powerful and
effective to resist the attack of revealing all keys.

We discuss the details of probabilistic prediction in Al-
gorithm 2. To improve the security of medical image en-
cryption, we sample probable varying and recover masked
pixels in a random manner, which benefits from the complete
inner probability distribution of ImageGPT. For each pixel
fed through the ImageGPT, the model explicitly predicts the
probability distribution of the next pixels conditioned on all
previous pixels. Generating pixels involves sampling from this
probability distribution and repeating the process in a feedback
fashion. From a more technical perspective, sampling is imple-
mented using the inverse transform sampling algorithm, which
involves (i) computing the cumulative distribution function of
the probability distribution, (ii) sampling a random number
n from U [1, N2], and (iii) finding the bin in which n falls
through binary search. When it is carried out deterministically
using a stream of numbers n (which appear as random, but
may or may not be the result of a random process) provided
externally.

Specifically, we utilize the remaining N2−n original pixels
to predict the n masked pixels one after another. Benefiting
from the powerful prediction ability of ImageGPT, we can
recover original pixels from n masked pixels more accurately.
Afterward, we get the recovered sequences IOri or IPla

from predicted pixels with Kr or Kw, respectively. Notably,
we will get the original image with the most probability
from Kr. In contrast, we will get a random but plausible
image from ImageGPT with Kw, which was selected from
the training datasets according to the probability distribution.
Formally, considering a sequence of N2 − n pixels denoted
as p1, ..., pi, ..., pN2−n. Our objective involves predicting and
generating the next n pixels to complete the sequence totaling
N2 pixels. The module fills in the masked pixels in a left-to-
right sequence through a pixel probability distribution.

C. Content-aware Permutation&Diffusion Module

To increase the complexity of cracking, we propose a
content-aware permutation&diffusion module, where we illus-
trate its structure in Fig. 3 with major steps of content-aware
permutation and DNA-based diffusion.

Algorithm 3: The Process of Permutation
Input: Right Key Kr or Wrong Key Kw, Sequence

S
′

M , S
′

K or SP , SQ Encoded by DNA Principal
Output: Permutation Result SN1 or SR1

1 length← Length(S
′

M )

2 AR← S
′

M (0);XR← S
′

M (0)
3 for i← 0 to length− 1 do
4 AR← Ta(ARi, S

′

M (i))

5 XR← Tx(XRi, S
′

M (i))
6 end
7 hashD ← SHA256(AR,XR)
8 hashK ← SHA256(Kr,Kw)
9 hashDK ← hashD ⊕ hashK

10 A1 ← hashDK(0 : 63)
11 A2 ← hashDK(64 : 127)
12 A3 ← hashDK(128 : 191)
13 A4 ← hashDK(192 : 255)
14 x1 ← (mod(fix(A1/10

8), 80)− 40) + (A1/10
14 −

fix(A1/10
14))

15 y1 ← (mod(fix(A2/10
8), 80)− 40) + (A2/10

14 −
fix(A2/10

14))
16 z1 ← (mod(fix(A3/10

8), 80) + 1) + (A3/10
14 −

fix(A3/10
14))

17 w1 ← (mod(fix(A4/10
8), 500)− 250) + (A4/10

14 −
fix(A4/10

14))
18 [x0, x1, x2, ..., xn]← HCLS(x0, y0, z0, w0)
19 Sp ← mod(floor(X × 1015), length− 1)
20 if encryption then
21 i← 1, j ← length/2 + 1
22 else
23 i← length/2 + 1, j ← 1
24 end
25 for k ← i to j do
26 S

′

M (Sp(k))↔ S
′

M (Sp(length− k))
27 end
28 SN1 ← S

′

M or SR1 ← S
′

M

29 return SN1 or SR1

Previous methods [39] acquire data only from the key
sequence, which lacks sensitivity due to the limited diversity,
thus transferring hash values from the original image to the ci-
pher image to ensure the security of medical healthcare. Since
high-dimensional images contain ample redundant pixels, we
propose a content-aware algorithm for random sampling from
high-dimensional images, which offers enough diverse forms
to increase the complexity of encrypted images. In addi-
tion, we put the permutation and diffusion operations under
DNA coding conditions, which both utilize the reversibility
of permutation operation and the commutative law of DNA
operation, without adding any extra data.

Specifically, the sequence will be encoded following the
DNA principal and be directly calculated with DNA opera-
tions. In this paper, the DAN operations include ADD, SUB,
and XOR, which calculate permutation operations with the
same algorithm and parameters, eliminating additional compu-
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Algorithm 4: The Process of Diffusion
Input: Right Key Kr or Wrong Key Kw, Sequence

S
′

M , S
′

K or SP , SQ Encoded by DNA Principal
Output: Diffused Result SN2 or SR2

1 Change S
′

M into Sbit
M with Binary;

2 length← Length(S
′

M );
3 hashK ← SHA256(S

′

K);
4 H1 ← hashK(128 : 191) ; H2 ← hashK(192 : 255);
5 x0 ← mod(fix(H1/10

15));
6 p← mod(fix(H2/10

15));
7 for t← 0 to length/2 do
8 xt+1 ← PWLCM(xt, p);
9 end

10 X ← [x0, x1, ..., xlength/2];
11 Y ← mod(floor(X × 1015), 256);
12 for i← 1 to length/2 + 1 do
13 Skey(i)← DNAen(S

′

M (i), Y (2i, 2i+ 1));
14 end
15 if encryption then
16 for i← 0 to length do
17 if mod(i, 2) == 1 then
18 D(i)← Tx(S

′

M (i), Skey(i));
19 D(i)← Tx(D(i), D(i− 1));
20 else
21 D(i)← Ta(S

′

M (i), Skey(i));
22 D(i)← Tx(D(i), D(i− 1));
23 end
24 end
25 else
26 for i← length to 0 do
27 if mod(i, 2) == 1 then
28 D(i)← Tx(S

′

M (i), Skey(i));
29 D(i)← Tx(D(i), S

′

M (i− 1));
30 else
31 D(i)← Ta(S

′

M (i), S
′

M (i));
32 D(i)← Tx(D(i), Skey(i− 1));
33 end
34 end
35 end
36 SN2 ← D(0 : length− 1) or

SR2 ← D(0 : length− 1);
37 return SN2 or SR2

tation costs. Given a key (right or wrong), the proposed method
employs the SHA256 algorithm to generate a random factor
(x0, p) and a content-aware random factor (x0, y0, z0, w0).
From one aspect, we utilize (x0, y0, z0, w0) and the HCLS
algorithm to produce a permutated control sequence, which
provides chaotic parameters and environment. The HCLS
algorithm is defined as Eq. 3:

ẋ = a(y − x) + w

ẏ = bx− y − xz

ż = xy − cz

ẇ = −dw + yz

(3)

where a, b, c, and d are parameters. The system will be
chaotic when satisfy a = 10, b = 8/3, c = 28, and
y ∈ [−1.52,−0.06]. Subsequently, we produce the permutated
sequence with chaotic parameters and environment. We show
the details of permutation in Algorithm 3, where Ta means
DNA ADD table, Ts means DNA SUB table, and Tx means
DNA XOR table. Notably, we solely show the transmission
process of S

′

M , other sequences perform the same process.
From another aspect, we first apply the PWLCM algorithm

to generate a pseudo-random DNA-rule-select sequence, which
generates a huge variation sequence with light adaption, thus
improving the key sensitivity. The PWLCM algorithm can be
written as Eq. 4:

xt+1 =


xt

µ , 0 ≤ xt < µ
xt−µ
0.5−µ , µ < xt ≤ 0.5

f( 1−xt

µ ), 0.5 < xt ≤ 1

(4)

where µ ∈ (0, 0.5] is a parameter. Then, we imitate the
biological diffusion process, generating a diffused sequence
with (x0, p) and a DNA-rule-select sequence. The details of
the diffusion process are elaborated in Algorithm 4, where
Ts means DNA SUB operation table and Kr or Kw is used
again to produce the diffused sequence. Finally, we calculate
both diffused sequence and permutated sequence, creating the
permutated and diffused sequence.

IV. EXPERIMENT

In this section, we design sufficient experimental sessions
to verify the validity and rationality of the proposed method.
This section contains eleven parts overall, including the de-
scription of the dataset, implementation details, cryptography
keyspace, histogram analysis, pixel correlation analysis, infor-
mation entropy analysis, sensitivity analysis, computation cost
analysis, ablation study, comparison with other methods, and
visualization.

A. Dataset

We employ ChestXray-14 [40], COVID-CT [41], and fcon-
1000 [4] to validate the performance of the proposed method.
The ChestXray-14 dataset is a substantial medical dataset
including 112,120 X-ray images, each image has a dimension
of 1024 × 1024 pixels and 8-bit depth. This dataset was
collected from 30,805 distinct patients with specific medical
conditions, including 14 disease classes mined by NLP from
relevant radiology reports. The dataset contains 14 categories
of common chest pathology, including lung atelectasis, solidi-
fication, infiltrates, pneumothorax, edema, emphysema, fibrous
degeneration, effusion, pneumonia, pleural thickening, cardiac
hypertrophy, nodules, masses, and hernias.

The COVID-CT dataset has a total of 746 lung CT images,
including 349 neocoronavirus-infected images and 397 non-
neocoronavirus-infected images. For each new coronavirus-
infected CT image, the dataset provides a related description
of the patient’s basic information (e.g., location, age, infected
condition, brief medical history, onset time with other medical
conditions). In particular, the original CT images in the dataset
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were 3D, but only the slices were considered by the physician
to select key features. Due to the clinical information is suf-
ficient, this dataset does not significantly affect the diagnostic
accuracy. The purpose of the COVID-CT dataset is to boost
the development of algorithms for identifying new crown
infections in lung CT (2D).

The fcon-1000 dataset was initiated by the 1000 Functional
Connectomes Project (FCP), which is ushering in a new era of
research on human brain function through the active sharing of
magnetic resonance imaging data. These data were collected
from more than a thousand subjects with 35 centers, and
the primary modalities include structural Magnetic Resonance
Imaging (sMRI) and resting-state Functional Magnetic Reso-
nance Imaging (rs-fMRI). This dataset aims to investigate the
associations between brain activity, behavior, cognitive func-
tions, and psychiatric disorders. Each volunteer contributes
multiple time points of fMRI scan data, encompassing various
tasks and resting states, providing researchers with abundant
material to explore the relationships between functional brain
networks and behavioral performances.

B. Implement details
We utilize a computer with 13th Gen Intel(R) Core(TM) i5-

13490F CPU 2.50GHz, one NVIDIA TITAN Xp GPU, 32G
memory, and a Win10 operating system. The initial key is
configured as a 2048 rows and 2 columns digital matrix. HCLS
algorithm parameters are set to d = 10, c = 8/3, e = 28,
and r = −0.5. To comprehensively validate the stability and
security of network transmission, we constructed a realistic
network environment with TCP/IP protocol for the proposed
method. We establish a Local Area Network (LAN) for closed
testing with the Tenda-AC7 router model, which has 1200M
power.

C. Cryptography Keyspace
The keyspace refers to the set including all possible keys

within a cryptographic system. The size of a keyspace is
typically expressed in terms of bits, which determines the
effort that potential attackers decrypt the cipher image with all
possible keys. A larger keyspace implies greater difficulty for
attackers to decrypt the cipher image. Due to the constraints
imposed by the rules, different encryption algorithms corre-
spond to different constraints on the keyspace. Since brute-
force methods attempt every possible key to break the health-
care system, the available keyspace must reserve a sufficient
number of alternatives. Ideally, this space should be larger
than 2100. In the proposed method, we particularly address
the issue of keyspace and design a sufficiently large one. To
enhance the diversity of keys, we add key p ∈ (0, 0.5) during
the key generation process. This extra key is used to increase
the randomness of the generated keys. To match the additional
key, we have also set an extra initial value x1 ∈ (0, 1) for
the PWLCM system’s initialization. Additionally, there are
four initial values for HCLS: x ∈ (−40, 40), y ∈ (−40, 40),
z ∈ (1, 81) and w ∈ (−250, 250). Therefore, the keyspace of
our system is approximately: S = (0.5×1015)2×(1×1015)2×
(80×1014)3×(500×1014) = 6.4×10127 ≈ 2418. Furthermore,

Fig. 4. The grayscale histograms of medical images. Where (a)
represents initial images, (b) represents the grayscale histograms of
initial images, (c) represents the cipher images encrypted with the
proposed method, and (d) represents the grayscale histograms of
cipher images.

if an attacker obtains a cipher image and attempts to acquire
the initial key through brute force, the expandable space of the
key space can reach 2256. After such expansion, the SHA256
algorithm is equivalent to extending to 2256 output results,
which is quite an astonishing scale. Therefore, obtaining the
initial key through brute force is hard work, the proposed
method possesses an adequate keyspace to ensure security.

D. Histogram Analysis

Researchers tend to utilize grayscale histograms to visu-
ally represent the number of pixel values at each grayscale
level. For image encryption, the grayscale histogram directly
expresses a certain amount of information, which poses a risk
of information leakage. Hence, it is necessary to adjust the
grayscale pixel distribution in cipher images. We utilize the
proposed method to encrypt medical images, which creates
a cipher image with random grayscale pixel distribution,
the visual results are shown in Fig. 4. From the figure,
the grayscale pixel distribution of initial images looks very
regular, which performs clear features and is easily cracked
subjectively. However, the grayscale pixel distribution of the
cipher image encrypted by the proposed method looks very
messy, it is difficult to distinguish the cipher image from white
noise. This greatly increases the difficulty of decrypting the
cipher image, making it an almost impossible task. The above
analysis shows that the proposed method maintains a high
security against information leakage and is hard to crack.

E. Pixel Correlation Analysis

Adjacent pixels often exhibit a strong correlation coefficient
within one image, which provides crucial clues for illegal
decryption. Breaking this correlation is crucial for image
encryption, as failure to do so significantly reduces the dif-
ficulty of illegal decryption. We can describe the correlation
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TABLE I
COMPARISON OF CORRELATION COEFFICIENTS BETWEEN PLAIN

IMAGES AND CIPHER IMAGES

Source Plain Cipher
H V D H V D

ChestX1 0.7105 0.7424 0.7735 0.0015 0.0016 0.0023
ChestX2 0.9396 0.9875 0.9912 0.0016 0.0025 -0.0015
COVID1 0.7619 0.8496 0.7841 0.0019 0.0012 0.0017
COVID2 0.7630 0.9013 0.8412 0.0009 0.0014 0.0011

fcon1 0.8915 0.8266 0.8315 0.0021 0.0008 -0.0009
fcon2 0.7992 0.7934 0.8229 0.0019 0.0011 -0.0015

Fig. 5. The visualization of correlation coefficients between medical
images before and after encryption. As illustrated, (a) represents the
plain image before encryption, and (e) represents the cipher image
after encryption. (b)-(d) represents the correlation coefficients before en-
cryption in the horizontal, vertical, and diagonal directions, respectively.
Similarly, (f)-(h) represents the correlation coefficients after encryption
in horizontal, vertical, and diagonal directions.

coefficient with the following formula:
rxy = cov(x,y)√

D(x)
√

D(y)

cov(x, y) = 1
N

∑N
i=1(xi − E(x))(yi − E(y))

D(x) = 1
N

∑N
i=1(xi − E(x))2

E(x) = 1
N

∑N
i=1 xi

(5)

We define x to a specific pixel and define y to its adjacent
pixel, cov(x, y) is their covariance. E(x) computes the expec-
tation of x, and D(x) computes the variance of x, the same
applies to y. To further elucidate the issue of correlation, we
calculate the correlation coefficients of adjacent pixels from
three different directions: horizontal, vertical, and diagonal.
These calculations can be presented in Table I. From the
table, we can directly observe that the correlation coefficient
between adjacent pixels of plain images performs high be-
fore encryption, indicating a significant correlation between
adjacent pixels. However, the correlation coefficient between
adjacent pixels of cipher images is low after encryption,
indicating that the correlation between adjacent pixels has been
disrupted. Additionally, Fig. 5 illustrates a visual comparison
of correlation coefficients before and after encryption for a
given medical image, which further validates the efficacy of
the proposed method.

F. Information Entropy Analysis
Information entropy aims to measure the magnitude of

information, which primarily serves to quantify the uncertainty

or randomness of information. Generally, higher informa-
tion entropy indicates greater uncertainty, further signifying
richer information content. If an event is highly random, its
information entropy value performs high. Conversely, if an
event is highly certain, its information entropy value per-
forms relatively low. In this paper, we employ information
entropy to characterize the information diffusion degrees in
encrypted images. Specifically, higher information entropy of
encrypted images indicates greater complexity and random-
ness, which increases the difficulty of illegal decryption. We
propose an LLM enhancing module and content-aware permu-
tation&diffusion module, integrating with the DNA operations
to increase randomness and complexity of pixel information,
thus increasing the confusion for information entropy. For a
random variable X , the information entropy H(X) is defined
as [42]:

H(X) = −
256∑
i=1

p(xi) log2 p(xi) (6)

where xi represents pixel values, and p(xi) denotes the proba-
bility value corresponding to xi. We randomly select 6 images
from 3 datasets and calculate their information entropy after
encryption. The calculated entropy values of these encrypted
images are as follows: 1) 7.9895 2) 7.9894 3) 7.9882 4) 7.9860
5) 7.9991 6) 7.9993. These results show that the entropy
value of the encrypted image is significantly higher and almost
reaches 8, which indicates the proposed method can disrupt the
regularity among pixels, thus effectively boosting the safety of
image encryption.

G. Sensitivity Analysis
Differential cryptanalysis [43] is a kind of cryptographic

attack technique, which aims to break cryptographic systems
or encryption algorithms. It leverages the differences between
plain images and cipher images to extract information about
the cryptographic key or algorithm structure. This attack
typically exploits small variations between inputs to infer prop-
erties of the key or algorithm, which poses a significant threat
to the cryptographic system. To capture such subtle variations,
researchers commonly employ NPCR [36] and UACI [44] for
assessment. We provide the calculation formulas here for both
metrics:{

NPCR = 1
M×N

∑M
i=1

∑N
j=1Dij × 100%

UACI = 1
M×N

∑M
i=1

∑N
j=1(

Ci(i,j)−C
′
i (i,j)

255 )× 100%
(7)

Dij =

{
1, Ci(i, j) ̸= C

′

i(i, j)

0, Ci(i, j) = C
′

i(i, j)
(8)

Given Ci as a cipher image, we alter only a single pixel
in Ci to obtain another cipher image C

′

i , the rest pixels
remain identical. Therefore, we can verify the impact of minor
changes by comparing Ci and C

′

i . In this paper, we analyze the
sensitivity of the input plain image and initial key. Specifically,
for a given plain image, we select a certain pixel and add
the pixel value by 100 to distinguish the original image. To
mitigate randomness, we select 6 images from three datasets
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TABLE II
SENSITIVITY ANALYSIS OF PLAIN IMAGES AND CIPHER IMAGES

Plain Images NPCR UACI
1 99.6189 33.4882
2 99.6093 33.5011
3 99.6093 33.4387
4 99.6167 38.4619
5 99.6198 33.4723
6 99.6052 33.5083

Cipher Image NPCR UACI
C1 ↔ C2 99.5945 33.3915
C1 ↔ C3 99.6069 33.4239
C2 ↔ C3 99.5774 33.4037

and compute the values 20 times for each image, averaging
the results to obtain the final results. The evaluation results
are presented in Table II, which shows the proposed method
achieves almost the theoretical upper limits of NPCR and
UACI, thus demonstrating the excellent performance of the
proposed method.

We set the initial key as a 2048×2 matrix and utilize LLM-
enhanced DNA algorithms to encode and encrypt the image,
generating the cipher image C1. Meanwhile, we obtain random
factors x0 and p with the content-aware permutation&diffusion
module. Specifically, we set x0=0.954835655147937 and
p=0.651258963465537. We slightly modify x0 and p by
setting x0 = x0 + 10−14 and p = p + 10−14, generating
cipher images C2 and C3, respectively. Next, we evaluate these
three cipher images with NPCR and UACI metrics. To visually
compare and analyze the sensitivity of plain images and cipher
images, we put specific calculation results in Table II.

H. Computation Cost Analysis

In this paper, we propose a plausibly deniable medical
image encryption method consisting of LLM enhancing mod-
ule and content-aware permutation&diffusion module. For the
LLM enhancing module, the computation cost mainly focuses
on the vision transformer architecture. Given an H × W
image, we initially utilize the proposed method to divide
the image into n blocks. Subsequently, each image block
is mapped through a fully connected layer. Assuming the
length of each image block is d, the time complexity of patch
embedding is O(nd2). Then, the vector sequence is encoded
to create an encoding time complexity of O(n2d+nh), where
the hidden layer dimension is h. Finally, considering the
aforementioned scenarios, the overall time complexity of LLM
enhancing module is O(nd2+n2d+nh). For the content-aware
permutation&diffusion module, the focus of time complexity
includes PWLCM and HCLS algorithms, which can be both
identified as l×l. Where l represents the length of the inputted
sequence. Finally, the overall time complexity of the proposed
method becomes O(nd2 + n2d + nh + l2). Especially, with
the experimental environment we implement, it takes 0.49s to
encrypt a 256 × 256 grayscale image and 1.97s to encrypt a
512 × 512 grayscale image in test mode. This time cost is
satisfactory and it will be even lower with the improvement
of hardware equipment.

I. Comparison with Other Methods

To further evaluate the performance of the proposed method,
we list some of the published state-of-the-art methods to serve
as a reference, the results are presented in Table III with
specifically highlight the best results. Table III shows that the
proposed method achieves the best performance in general,
especially in sensitivity. The NPCR value reached 99.6953 and
the UACI value reached 33.6047. We attribute this to involve
additional adjacent pixel information by the content-aware
permutation&diffusion module. However, it ranks slightly
lower than the best in terms of correlation and information
entropy. We believe that the discrepancy might arise from
the best method utilizing RGB color images for encryption,
whereas the proposed method focuses on encrypting single-
channel grayscale images. As the proposed method is designed
for encrypting medical images, we find the advantage of our
approach in medical image encryption.

J. Ablation Study

We combine different modules in various ways to further
analyze the role of each module. The modules evaluated pri-
marily include LLMs coding, DNA coding, and content-aware
permutation&diffusion module. We adopt a progressively in-
cremental manner to combine different modules and present
the calculation results in Table IV to facilitate comparative
analysis. The evaluation metrics include pixel correlation in H,
V, and D directions, information entropy, and sensitivity. From
the table, it can be observed that the performance of DNA
coding is slightly superior to LLM coding. We attribute this to
the fact that LLMs are not dedicated encoding algorithms. We
mainly utilize the powerful generating ability of LLMs instead
of its auxiliary coding ability. In this paper, we primarily utilize
LLMs to generate plausible deniable images, which is the core
contribution. Furthermore, the combination of DNA coding,
LLMs coding, and content-aware permutation&diffusion mod-
ule create the best performance, indicating the indispensability
of each module.

K. Visualization

To emphatically demonstrate the generation of plausible
images under the scenario of inputting wrong keys, we provide
several examples here, as shown in Fig. 6. We select 3 samples
from the ChestX-ray 14, COVID-CT, and fcon-1000 datasets,
and showcase intermediate figures during the encryption and
decryption process. For each sample, we present 1 inputted
plain image, 1 encrypted image, 1 decrypted image through
the right key, and 3 decrypted images through the wrong keys
to thoroughly validate the effectiveness of the plausible denia-
bility approach. During the decryption process, if the right key
is provided, an original medical image can be decrypted from
a single cipher image. Otherwise, if a wrong key is given,
the cipher image will be randomly decrypted into a wrong
but plausible plain image. These plausible images differ from
right-plain images with a clear distribution boundary, however,
they still look like the images from the training set. This makes
potential attackers confused and convinces them to get the
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TABLE III
COMPARISON WITH OTHER METHODS

Cryptosystems Correlation Entropy Sensitivity
V H D NPCR UACI

Zhan et al. [45] 0.0039 0.0052 0.0215 7.9978 76.26 28.30
Chai et al. [46] -0.0082 -0.0068 0.0036 7.9992 99.62 33.51
Yan et al. [47] -0.0056 -0.0012 -0.0020 7.9994 99.62 33.55

Aouissaoui et al. [48] 0.0240 0.0014 -0.0014 7.9978 99.6552 33.5871
Chen et al. [49] -0.0064 0.0003 0.0110 7.9993 99.6218 33.5084
Zhang et al. [50] 0.0000016 -0.000003 -0.0000001 - 99.5009 33.4408

Wu et al. [4] 0.0014 0.0009 0.0004 7.9992 99.6841 33.5539
Ours 0.0009 0.0009 -0.0003 7.9993 99.6953 33.6047

TABLE IV
ABLATION STUDY OF DIFFERENT MODULES

Cryptosystems Correlation Entropy Sensitivity
V H D NPCR UACI

DNA 0.0031 0.0034 0.0029 7.5531 97.5846 31.8367
LLMs 0.0038 0.0041 0.0035 7.5039 96.8776 30.9941

DNA+Permutation&Diffusion -0.0017 0.0013 0.0018 7.9123 98.9318 33.4084
LLMs+Permutation&Diffusion 0.0027 -0.0020 -0.0023 7.8868 98.3560 32.7764

DNA+LLMs+Permutation&Diffusion 0.0009 0.0009 -0.0003 7.9993 99.6953 33.6047

Fig. 6. The different processing steps for right and wrong keys are
illustrated in the figure. Firstly, the input plain image undergoes encoding
and encryption. Subsequently, if the right key is given, we utilize the
proposed method to decrypt the right plain image. In contrast, a wrong
yet plausible image will be randomly decrypted with a wrong key.

right image. Specifically, each wrong key can only decrypt to
1 random plausible image, and repeating the operation creates
the same plausible image. This keeps the decryption process
is same between right and wrong keys, making it difficult for
potential attackers to distinguish between two kinds of results.
In this figure, 3 plausible images require 3 different wrong
keys to be decrypted.

V. CONCLUSION

In this paper, we first integrate LLMs into medical image en-
cryption, complemented by DNA encoding and content-aware
permutation&diffusion module, achieving satisfactory results
in medical image encryption tasks. Before DNA encoding,
the LLM enhancing module compresses pixels into highly
compact signals with probabilistic variations and plausible de-
niability, functioning as an additional privacy-preserving layer
utilizing LLM to mitigate privacy leakage. The content-aware
permutation&diffusion module enhances security by adding
permutation and introducing randomness through sampling

from adjacent pixel correlations to disrupt internal pixel links,
it also implements a DNA-based diffusion process to signifi-
cantly elevate the difficulty of cracking. The proposed method
employing LLMs offers a different approach to medical image
encryption. In the future, with the continuous advancement
of LLMs, we anticipate further improvements in our model’s
performance.
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